With cloud services, 4K HD video streaming, Internet of Things (IoT), and mobile connectivity for billions of devices becoming standard, organizations must modernize the way they communicate and conduct business. In addition to consuming an enormous amount of network capacity, these services increase operational complexity just as organizations are striving to meet customer demands for greater business agility and performance.

To succeed in the digital era, organizations need network platforms that allow them to simplify and speed up operations, without increasing costs. Such platforms incorporate innovative software to analyze and automate network operations, thereby reducing OpEx, and provide flexible deployment options with forwarding performance and scale to dramatically reduce CapEx.

A Flexible, High-Performance Switching Platform

The ExtremeSwitching SLX 9540 is designed to cost-effectively deliver the performance needed to address the explosive growth in network bandwidth, devices, and services — today and well into the future. This flexible platform, powered by Extreme SLX-OS, provides carrier-class advanced features that leverage proven Extreme routing, MPLS, Carrier Ethernet, and VXLAN overlay technology currently deployed in the most demanding service provider, data center, and enterprise networks. And it is all delivered through space- and power-efficient forwarding hardware.

The flexible architecture is designed for optimal operations, supporting diverse deployment options — such as data center edge, WAN edge, IXP, and colocation data center deployments — that require deep buffering for lossless forwarding, advanced MPLS, Carrier Ethernet features or VXLAN network virtualization overlays, and greater bandwidth. In addition, the SLX 9540 helps address the increasing agility and analytics needs of digital organizations with innovative network automation and visibility, capabilities enabled through Extreme Workflow Composer™ with turnkey automation suites and the Extreme SLX Insight Architecture.
Deployment Versatility with Ultra-Deep Buffers and MPLS

The SLX 9540 is the industry’s most powerful compact deep buffer data center switch, providing a cost-efficient solution that is purpose-built for the most demanding service provider and enterprise data centers and MAN/WAN applications. The robust system architecture — supported by SLX-OS and a versatile feature set including IPv4, IPv6, MPLS/VPLS, and OpenFlow forwarding — combines with Carrier Ethernet 2.0 and OAM capabilities to provide deployment flexibility. This enables the SLX 9540 to scale from the data center edge to data center interconnect and MAN/WAN environments.

Designed with state-of-the-art network processor technology, the SLX 9540 has a switching capacity of up to 800 Gbps in a 1U form factor. Advanced hardware with fine-grained QoS support enables full-duplex, high-speed performance for any mix of IPv4, IPv6, and MPLS/VPLS services.

SLX 9540 hardware is available in multiple configurations enabled through SLX-OS feature licenses. The SLX 9540-24S supports 24 10 GbE/1 GbE combination ports along with 24 1 GbE ports. The SLX 9540-48S supports 48 10 GbE/1 GbE combination ports along with 6 100 GbE/40 GbE combination ports. Individual SLX-OS software licenses are available to enable all 48 10 GbE/1 GbE and 6 100 GbE/40 GbE ports on the SLX 9540-24S, making it equivalent to the SLX 9540-48S. This approach provides financial and operational flexibility for diverse business and service deployment needs.

Modular, Virtualized Operating System

The SLX 9540 runs SLX-OS, a fully virtualized Linux-based operating system that delivers process-level resiliency and fault isolation. SLX-OS supports advanced routing, MPLS, and Carrier Ethernet 2.0 features. It is highly programmable with support for REST and NETCONF, enabling full network lifecycle automation with Extreme Workflow Composer and turnkey automation suites. In addition, SLX-OS is based on Ubuntu Linux, which offers all the advantages of open source and access to commonly used Linux tools.

SLX-OS runs in a virtualized environment over a KVM hypervisor, with the operating system compartmentalized and abstracted from the underlying hardware. The core operating system functions for the SLX 9540 are hosted in the system VM. This approach provides clean failure domain isolation for the switch operating system while leveraging the x86 ecosystem — thereby removing single vendor lock-in for system tools development and delivery. In addition, it supports a guest VM, which is an open KVM environment for running third-party and customized monitoring, troubleshooting, and analytics applications.

Versatile Compact Switch

Gain flexibility and scale. The SLX 9540 delivers space-, power-, and cost-efficient density along with high performance for data center interconnect, WAN edge, IXP, colocation data center, and metro Ethernet network deployments.

SLX 9540 Architecture

The SLX 9540 architecture is designed to support connectivity needs today and well into the future as bandwidth and application workload requirements change. Extreme Networks offers an array of SLX 9540 configurations with software licenses to help organizations optimize port density and capabilities. These switches leverage the latest Intel x86 CPU and merchant silicon packet processor technology for optimal space, power, and cooling in a highly reliable, carrier-class compact fixed switching platform.

The SLX 9540 delivers:

- Multiple 1/10/40/100 GbE configurations for deployment flexibility.
- Ultra-deep buffers for lossless forwarding in demanding data center and WAN applications.
- Advanced forwarding — including IPv4, IPv6, MPLS/VPLS, BGP-EVPN, and OpenFlow — to support diverse use cases.
- Extreme OptiScale™ optimizes the programmable hardware and software capabilities of the adaptive SLX 9540 to accelerate innovation and deliver investment protection.
Embedded Network Visibility

The SLX 9540 includes the Extreme SLX Insight Architecture delivered through SLX-OS and SLX 9540 hardware innovation. This new approach to network monitoring and troubleshooting provides a highly differentiated solution that makes it faster, easier, and more cost-effective to get the comprehensive, real-time visibility needed for network operations and automation. By embedding network visibility on every switch or router, the Extreme SLX Insight Architecture can help organizations achieve pervasive visibility throughout the network to quickly and efficiently identify problems, accelerate mean-time-to-resolution, and improve overall service levels.

• Dedicated Analytics Path - The Extreme SLX Insight Architecture provides an innovative internal analytics path between the packet processor for the SLX 9540 interfaces and the architecture’s open KVM environment running on the dedicated cores of the Intel CPU. This enables applications running in the open KVM environment to extract forwarding data without disrupting the normal operation of the SLX 9540.

• Flexible Streaming - The Extreme SLX Insight Architecture provides flexible streaming options, enabling captured data to be delivered to analytics applications off the platform.¹

• Dedicated Analytics Storage - The SLX 9540 provides 128 GB of on-device storage dedicated to the Extreme SLX Insight Architecture for applications running in the open KVM environment. This enables real-time data capture for fast and easy access.

Improved Business Agility with Workflow Automation

With DevOps-style automation, the SLX 9540 and Extreme Workflow Composer help organizations improve business agility and accelerate innovation by automating the entire network lifecycle — from provisioning, validation, and troubleshooting to the remediation of network services. At the same time, these solutions align workflow automation to IT operations and modern DevOps tool chains.

By automating and orchestrating across domains within the services delivery chain, Extreme Workflow Composer connects functional domains — such as the network, compute, storage, and applications — to minimize the number of transitions between functions. This streamlines the delivery of services and infrastructure changes so that they are fast, reliable, and repeatable (see Figure 2). In addition, turnkey automation suites enable organizations to easily deploy Extreme Workflow Composer with Extreme SLX switches and routers using a modular, customizable approach, helping to jumpstart the automation journey.

¹ For information on supported platforms and applications, please refer to the documentation provided with Extreme SLX Insight Architecture.
Embedded Network Visibility
Keep network traffic and operations running smoothly with pervasive, real-time network analytics, monitoring, and troubleshooting.

Extreme SLX Insight Architecture
The Extreme SLX Insight Architecture delivers dynamic flow identification, intelligent pre-processing, and flexible data streaming capabilities on each router to support key network operations use cases without disrupting network traffic. Use cases include:
- Real-time monitoring
- Overlay and underlay visibility
- Intelligent automation

Devops-Style Automation
Improve business agility and accelerate innovation with cross-domain network automation.

ExtremeSwitching SLX 9540 and Extreme Workflow Composer
The SLX 9540 with Extreme Workflow Composer enables automation of the entire network lifecycle with event-driven automation, including:
- Automation for provisioning, validation, troubleshooting, and remediation of network services
- End-to-end IT workflow automation through cross-domain integration
- Customizable and do-it-yourself workflow automation options in multivendor network environments
- DevOps methodologies, open source technologies, and a thriving technical community
- Industry-standard REST/NETCONF-based APIs with Yang models, OpenFlow, scripting languages, and streaming APIs
- Turnkey automation with Extreme Workflow Composer Automation Suites for network essentials, IP fabric and IXP workflows, and Extreme SLX switches and routers

Extreme Management Center for Insights, Visibility and Control
The SLX family of switches and routers, including SLX 9540 can be managed by Extreme Management Center (XMC). XMC includes a suite of applications, empowering administrators to deliver a superior quality experience to end users through a single pane of glass and a common set of tools to provision, manage and troubleshoot the network. It works across wired and wireless networks, from the edge to the data center and private cloud.

XMC provides a consolidated view of users, devices and applications for wired and wireless networks – from data center to edge. Zero touch provisioning lets one quickly bring new infrastructure online. A granular view of users, devices and applications with an easy to understand dashboard enables efficient inventory and network topology management.

XMC also provides ecosystem integration, includes off the box integrations with major enterprise data center virtual environments such as VMWare, OpenStack and Nutanix to provide VM visibility and enforce security settings. Get more information on Extreme Management Center.

Figure 2: Extreme Workflow Composer Automation Suites with Extreme SLX switches and routers enable software-driven network lifecycle and cross-domain workflow automation.
SLX 9540 Switch Features

![SLX 9540 Front View](image1)

![SLX 9540 Rear View with Fan Modules](image2)

<table>
<thead>
<tr>
<th>Item</th>
<th>Extreme SLX 9540</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum 100 GbE/40 GbE ports</td>
<td>6</td>
</tr>
<tr>
<td>Maximum 10 GbE/1 GbE ports</td>
<td>48</td>
</tr>
<tr>
<td>Switch fabric capacity (data rate, full duplex)</td>
<td>800 Gbps</td>
</tr>
<tr>
<td>Forwarding capacity (data rate, full duplex)</td>
<td>720 Mpps</td>
</tr>
<tr>
<td>Airflow</td>
<td>Front to back or back to front (orderable option)</td>
</tr>
<tr>
<td>Fan module slots</td>
<td>5 (4+1 redundancy)</td>
</tr>
<tr>
<td>Maximum AC power supply rating</td>
<td>650 W</td>
</tr>
<tr>
<td>Power Supplies Modular 650W AC power supply (up to two PSUs)</td>
<td>Power Supplies Modular 650W DC power supply (up to two PSUs)</td>
</tr>
<tr>
<td>Height</td>
<td>1.72 in./4.37 cm/1 RU</td>
</tr>
<tr>
<td>Width</td>
<td>17.32 in./44.00 cm</td>
</tr>
<tr>
<td>Depth chassis only without cable management or fan handles</td>
<td>17.51 in./44.47 cm</td>
</tr>
<tr>
<td>Weight chassis only</td>
<td>19.84 lb/9.00 kg</td>
</tr>
</tbody>
</table>

SLX 9540 Orderable Configurations – Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Extreme SLX 9540-24S</td>
</tr>
<tr>
<td>100 GbE/40 GbE ports enabled per switch</td>
<td>N/A^2</td>
</tr>
<tr>
<td>10 GbE/1 GbE combo ports enabled per switch</td>
<td>24^2</td>
</tr>
<tr>
<td>1 GbE ports enabled per switch</td>
<td>24^2</td>
</tr>
<tr>
<td>Port type</td>
<td>10 GbE SFP+, 1 GbE SFP+</td>
</tr>
<tr>
<td>Packet buffers per switch</td>
<td>6 GB</td>
</tr>
<tr>
<td>Route scale</td>
<td>1,500,000 (IPv4), 140,000 (IPv6)</td>
</tr>
<tr>
<td>OptiScale® Internet Routing</td>
<td>Yes</td>
</tr>
<tr>
<td>Jumbo frame (maximum size)</td>
<td>9,216 bytes</td>
</tr>
<tr>
<td>QoS priority queues (per port)</td>
<td>8</td>
</tr>
<tr>
<td>MPLS</td>
<td>With Extreme SLX-OS advanced feature license</td>
</tr>
<tr>
<td>OptiScale® Internet Routing</td>
<td>With Extreme SLX-OS advanced feature license</td>
</tr>
</tbody>
</table>

^2 Software upgrade licenses are available for the Extreme SLX 9540-24S for Capacity on Demand (CoD) to enable additional 10 GbE/1 GbE support on the 1 GbE ports, and for Ports on Demand (PoD) to enable 100 GbE/40 GbE ports, making the Extreme SLX 9540-24S equivalent to the Extreme SLX 9540-48S.
Power and Heat Dissipation

<table>
<thead>
<tr>
<th></th>
<th>650W AC PSU 650W DC PSU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>2.15” x 9.0” x 1.57”</td>
</tr>
<tr>
<td></td>
<td>54.5mm x 228.6mm x 40mm</td>
</tr>
<tr>
<td>Weight</td>
<td>1.63 lb (0.741 kg)</td>
</tr>
<tr>
<td>Voltage Input Range</td>
<td>90 to 264 Vac</td>
</tr>
<tr>
<td>Line Frequency Range</td>
<td>47 to 63 Hz</td>
</tr>
<tr>
<td>PSU Input Socket</td>
<td>IEC 320, C14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum Heat Dissipation (BTU/hr) (Fans high, all ports 100% traffic, 2 PSU)</th>
<th>Maximum Power Dissipation (BTU/hr) (Fans high, all ports 100% traffic, 2 PSU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,314 BTU/hr</td>
<td>385 W</td>
</tr>
</tbody>
</table>

Acoustics

<table>
<thead>
<tr>
<th>Bystander Sound Pressure</th>
<th>Bystander Sound Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>63.0 dBA</td>
</tr>
<tr>
<td>Rear</td>
<td>69.0 dBA</td>
</tr>
<tr>
<td>Right Side</td>
<td>63.2 dBA</td>
</tr>
<tr>
<td>Left Side</td>
<td>63.2 dBA</td>
</tr>
<tr>
<td>Average</td>
<td>64.6 dBA</td>
</tr>
</tbody>
</table>

Specifications

IEEE Compliance

- Ethernet
 - 802.3-2005 CSMA/CD Access Method and Physical Layer Specifications
 - 802.3ab 1000BASE-T
 - 802.3ae 10 Gigabit Ethernet
 - 802.3u 100BASE-TX, 100BASE-T4, 100BASE-FX Fast Ethernet at 100 Mbps with Auto-Negotiation
 - 802.3x Flow Control
 - 802.3z 1000BASE-X Gigabit Ethernet over fiber optic at 1 Gbps
 - 802.3ad Link Aggregation
 - 802.1Q Virtual Bridged LANs
 - 802.1D MAC Bridges
 - 802.1w Rapid STP
 - 802.1s Multiple Spanning Trees
 - 802.1ag Connectivity Fault Management (CFM)
 - 802.3ba 10 Gigabit Ethernet
 - 802.1ab Link Layer Discovery Protocol
 - 802.1x Port-Based Network Access Control
 - 802.3ah Ethernet in the First Mile Link OAM3
 - ITU-T G.8033/Y.1731 OAM mechanisms for Ethernet4
 - 802.1ak for MVRP

RFC Compliance

- General Protocols
 - RFC 768 UDP
 - RFC 791 IP
 - RFC 792 ICMP
 - RFC 793 TCP
 - RFC 826 ARP
 - RFC 854 TELNET
 - RFC 894 IP over Ethernet
 - RFC 903 RARP
 - RFC 906 TFTP Bootstrap
 - RFC 950 Subnet
 - RFC 951 BootP
 - RFC 1027 Proxy ARP
 - RFC 1042 Standard for The Transmission of IP
 - RFC 1166 Internet Numbers
 - RFC 1122 Host Extensions for IP Multicasting
 - RFC 1191 Path MTU Discovery
 - RFC 1340 Assigned Numbers
 - RFC 1542 Assigned Numbers
 - RFC 1542 BootP Extensions
 - RFC 1591 DNS (client)
 - RFC 1812 Requirements for IPv4 Routers
 - RFC 1858 Security Considerations for IP Fragment Filtering

WWW.EXTREMENETWORKS.COM
General Protocols (cont.)
- RFC 2131 Boot/PDHCP Helper
- RFC 2578 Structure of Management Information Version 2
- RFC 2784 Generic Routing Encapsulation
- RFC 3021 Using 31-Bit Prefixes on IPv4 Point-to-Point Links
- RFC 3768 VRRP
- RFC 4001 Textual Conventions for Internet Network Addresses
- RFC 4632 Classless Interdomain Routing (CIDR)
- RFC 4950 ICMP Extensions for MPLS
- RFC 5880 Bidirectional Forwarding Detection¹
- RFC 5881 Bidirectional Forwarding Detection for IPv4 and IPv6 (Single Hop)¹
- RFC 5882 Generic Application of Bidirectional Forwarding Detection²
- RFC 5884 Bidirectional Forwarding Detection for Multihop Paths²

BGP4
- RFC 1745 OSPF Interactions
- RFC 1772 Application of BGP in the Internet
- RFC 1997 Communities and Attributes
- RFC 2385 BGP Session Protection via TCP MD5
- RFC 2439 Route Flap Dampening
- RFC 2918 Route Refresh Capability
- RFC 3392 Capability Advertisement
- RFC 3682 Generalized TT L Security Mechanism for eBGP Session Protection
- RFC 4271 BGPv4
- RFC 4364 BGP/MPLS IP Virtual Private Networks
- RFC 4456 Route Reflection
- RFC 4554 Route Flap Dampening
- RFC 4632 Classless Interdomain Routing (CIDR)
- RFC 4724 Graceful Restart Mechanism for BGP
- RFC 4861 Neighbor Discovery for IP version 6 (IPv6)
- RFC 4950 ICMP Extensions for MPLS
- RFC 5120 IS-IS Multi-Topology Support
- RFC 5250 OSPF Opaque LSA Option
- RFC 5501 BGP Implementation
- RFC 5502 BGP Implementation
- RFC 5503 BGP Implementation
- RFC 5504 BGP Implementation
- RFC 5505 BGP Implementation
- RFC 5506 BGP Implementation
- RFC 5507 BGP Implementation
- RFC 5508 BGP Implementation
- RFC 5509 BGP Implementation
- RFC 5510 BGP Implementation
- RFC 5511 BGP Implementation
- RFC 5512 BGP Implementation
- RFC 5513 BGP Implementation
- RFC 5514 BGP Implementation
- RFC 5515 BGP Implementation
- RFC 5516 BGP Implementation
- RFC 5517 BGP Implementation
- RFC 5518 BGP Implementation
- RFC 5519 BGP Implementation
- RFC 5520 BGP Implementation
- RFC 5521 BGP Implementation
- RFC 5522 BGP Implementation
- RFC 5523 BGP Implementation
- RFC 5524 BGP Implementation
- RFC 5525 BGP Implementation
- RFC 5526 BGP Implementation
- RFC 5527 BGP Implementation
- RFC 5528 BGP Implementation
- RFC 5529 BGP Implementation
- RFC 5530 BGP Implementation
- RFC 5531 BGP Implementation
- RFC 5532 BGP Implementation
- RFC 5533 BGP Implementation
- RFC 5534 BGP Implementation
- RFC 5535 BGP Implementation
- RFC 5536 BGP Implementation
- RFC 5537 BGP Implementation
- RFC 5538 BGP Implementation
- RFC 5539 BGP Implementation
- RFC 5540 BGP Implementation
- RFC 5541 BGP Implementation
- RFC 5542 BGP Implementation
- RFC 5543 BGP Implementation
- RFC 5544 BGP Implementation
- RFC 5545 BGP Implementation
- RFC 5546 BGP Implementation
- RFC 5547 BGP Implementation
- RFC 5548 BGP Implementation
- RFC 5549 BGP Implementation
- RFC 5550 BGP Implementation
- RFC 5551 BGP Implementation
- RFC 5552 BGP Implementation
- RFC 5553 BGP Implementation
- RFC 5554 BGP Implementation
- RFC 5555 BGP Implementation
- RFC 5556 BGP Implementation
- RFC 5557 BGP Implementation
- RFC 5558 BGP Implementation
- RFC 5559 BGP Implementation
- RFC 5560 BGP Implementation
- RFC 5561 BGP Implementation
- RFC 5562 BGP Implementation
- RFC 5563 BGP Implementation
- RFC 5564 BGP Implementation
- RFC 5565 BGP Implementation
- RFC 5566 BGP Implementation
- RFC 5567 BGP Implementation
- RFC 5568 4-Octect AS specific BGP Extended Community

IPv4 Multicast
- RFC 1112 IGMP v1
- RFC 2236 IGMP v2
- RFC 4601 PIM-DM
- RFC 4607 PIM-SSM
- RFC 4610 Anycast RP using PIM
- RFC 5059 BSR for PIM

QoS
- RFC 2474 DiffServ Definition
- RFC 2475 An Architecture for Differentiated Services
- RFC 2597 Assured Forwarding PHB Group
- RFC 2697 Single Rate Three-Color Marker
- RFC 2698 A Two-Rate Three-Color Marker
- RFC 3246 An Expedited Forwarding PHB

IPv6 Core
- RFC 1887 IPv6 unicast address allocation architecture
- RFC 1981 IPv6 Path MTU Discovery
- RFC 2375 IPv6 Multicast Address Assignments
- RFC 2450 Proposed TLA and NLA Assignment Rules
- RFC 2460 IPv6 Specification
- RFC 2462 IPv6 Stateless Address — Auto-Configuration
- RFC 2464 Transmission of IPv6 over Ethernet Networks
- RFC 2471 IPv6 Testing Address allocation
- RFC 2711 IPv6 Router Alert Option
- RFC 3587 IPv6 Global Unicast — Address Format
- RFC 4193 Unique Local IPv6 Unicast Addresses
- RFC 4291 IPv6 Addressing Architecture
- RFC 4301 IP Security Architecture
- RFC 4303 Encapsulation Security Payload
- RFC 4305 ESP and AH cryptography
- RFC 4443 ICMPv6
- RFC 4552 Auth for OSPFv3 using AH /ESP
- RFC 4835 Cryptographic Alg. Req. for ESP
- RFC 4861 Neighbor Discovery for IP version 6 (IPv6)
- RFC 3315 Dynamic Host Configuration Protocol for IPv6 (DHCPv6)

IPv6 Routing
- RFC 2740 OSPFv3 for IPv6
- RFC 2545 Use of BGP-MP for IPv6
- RFC 5308 Routing IPv6 with IS-IS
- RFC 6164 Using 127-Bit IPv6 Prefixes on Inter-Router Links
- RFC 8106 Support for IPv6 Router Advertisements with DNS Attributes

MPLS
- RFC 2205 RSVP v1 Functional Specification
- RFC 2209 RSVP v1 Message Processing Rules
- RFC 2702 TE over MPLS
- RFC 2961 RSVP Refresh Overhead Reduction Extensions
- RFC 3031 MPLS Architecture
- RFC 3032 MPLS Label Stack Encoding
- RFC 3037 LDP Applicability
- RFC 3097 RSVP Cryptographic Authentication
- RFC 3209 RSVP-TE
- RFC 3270 MPLS Support of Differentiated Services
- RFC 3478 LDP Graceful Restart
- RFC 3815 Definition of Managed Objects for the MPLS, LDP
- RFC 4090 Fast Reroute Extensions to RSVP-TE for LSP Tunnels
- RFC 4364 BGP/MPLS IP Virtual Private Networks
- RFC 4379 OAM

¹ Supported with Extreme SLX-OS 17r.1.00 and later software.
² Supported with Extreme SLX-OS 17r.1.01 and later software.
Management and Visibility

- Integrated industry-standard Command Line Interface (CLI)
- RFC 854 Telnet
- RFC 2068 HTTP
- RFC 2818 HTTPS
- RFC 3176 sFlow v5
- sFlow extension to VXLAN
- RFC 4253 Secure Shell (SSH)
- Secure Copy (SCP v2)
- SFTP
- RFC 8040 RESTCONF Protocol - PATCH, PUT, POST, DELETE support.
- RFC 5905 Network Time Protocol Version 4
- RFC 3986 Uniform Resource Identifier (URI): Generic Syntax
- RFC 6241 NETCONF Configuration Protocol (Partial)
- RFC 4742 “Using the NETCONF Configuration Protocol over Secure Shell (SSH)”
- RFC 6020, “YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)”
- RFC 6021, “Common YANG Data Types”
- RFC 4741 NETCONF (Partial)
- OpenFlow 1.3
- Chrome
- Curl

- TCPdump
- Wireshark
- SNMP Infrastructure (v1, v2c, v3)
- RFC 1157 Simple Network Management Protocol
- RFC 1908 Coexistence between Version 1 and Version 2 of the Internet-standard Network Management Framework
- RFC 2758 Structure of Management Information Version 2
- RFC 2579 Textual Conventions for SMIPv2
- RFC 2580 Conformance Statements for SMIPv2
- RFC 3410 Introduction and Applicability Statements for Internet Standard Management Framework
- RFC 3411 An Architecture for Describing SNMP Management Frameworks
- RFC 3412 Message Processing and Dispatching
- RFC 3413 SNMP Applications
- RFC 3414 User-based Security Model
- RFC 3415 View-based Access Control Model
- RFC 3416 Version 2 of SNMP Protocol Operations
- RFC 3417 Transport Mappings
- RFC 3418 Management Information Base (MIB) for the SNMP
- RFC 3584 Coexistence between Version 1, Version 2, and Version 3 of the Internet-standard Network Management Framework
- RFC 3826 The Advanced Encryption Standard (AES) Cipher Algorithm in the SNMP User-based Security Model
- SNMP MIBs
- IANA-ADDRESS-FAMILY-NUMBERS-MIB [https://www.iana.org/assignments/ianaaddressfamilynumbers-mib/ianaaddressfamilynumbers-mib]
- IANA ifType-MIB [https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib]
- sFlow v5 MIB
- RFC 1213 Management Information Base for Network Management of TCP/IP-based Internets: MIB-II
- RFC 2790 Host Resource MIB
- RFC 2819 RMON Groups 1, 2, 3, 9
- RFC 2863 The Interfaces Group MIB (IF)
- RFC 3289 Diffserv MIB
- RFC 3635 Etherlike Interface Type MIB
- RFC 3811 MPLS TC STD MIB
- RFC 3812 MPLS TE STD MIB
- RFC 3813 MPLS LSR MIB
- RFC 4001 Textual Conventions for Internet Network Addresses
- RFC 4022 Textual Conventions for Internet Network Addresses (TCP)
- RFC 4113 Management Information Base for the User Datagram Protocol (UDP)
- RFC 4133 Entity MIB
- RFC 4188 Bridge MIB
- RFC 4273 BGP-4 MIB
- RFC 4292 IP Forwarding Table MIB (IP-FORWARD)
- RFC 4293 Management Information Base for the Internet Protocol (IP)
- RFC 4363 Dot1q MIB
- RFC 4444 IS-IS MIB
- RFC 4750 OSPF v2 MIB
- RFC 4878 DOT3-OAM-MIB
- RFC 7257 VPLS MIB (Partial)
- RFC 7331 BFD MIB
- IEEE/MEF MIBs
- IEEE-802 LLDP MIB
- MEF-SOAP-PM-MIB
- IEEE-8021-CFM-MIB
- IEEE-8021-CFM-V2-MIB
Element Security

- AAA
- Username/Password (Challenge and Response)
- Bi-level Access Mode (Standard and EXEC Level)
- Role-Based Access Control (RBAC)
- RFC 2865 RADIUS
- RFC 2866 RADIUS Accounting
- TACACS/TACACS+ - draft-grant-tacacs-02
- RFC 5905 NTP Version 4
- NTP 4.2.8p10
- RFC 5961 TCP Security
- RFC 4250 Secure Shell (SSH) Protocol Assigned Numbers
- RFC 4251 Secure Shell (SSH) Protocol Architecture
- RFC 4252 Secure Shell (SSH) Authentication Protocol
- RFC 4253 Secure Shell (SSH) Transport Layer Protocol
- RFC 4254 Secure Shell (SSH) Connection Protocol
- RFC 4344 SSH Transport Layer Encryption Modes
- draft-ietf-secsh-filexfer-13.txt SSH File Transfer Protocol (SFTP)
- Secure Copy (SCP v2) (see RFC 4251)
- RFC 2068 HTTP
- RFC 4250 Secure Shell (SSH) Protocol Assigned Numbers
- RFC 4251 Secure Shell (SSH) Protocol Architecture
- RFC 4252 Secure Shell (SSH) Authentication Protocol
- RFC 4253 Secure Shell (SSH) Transport Layer Protocol
- RFC 4254 Secure Shell (SSH) Connection Protocol
- RFC 4344 SSH Transport Layer Encryption Modes
- draft-ietf-secsh-filexfer-13.txt SSH File Transfer Protocol (SFTP)
- Secure Copy (SCP v2) (see RFC 4251)
- RFC 2068 HTTP
- RFC 4250 Secure Shell (SSH) Protocol Assigned Numbers
- RFC 4251 Secure Shell (SSH) Protocol Architecture
- RFC 4252 Secure Shell (SSH) Authentication Protocol
- RFC 4253 Secure Shell (SSH) Transport Layer Protocol
- RFC 4254 Secure Shell (SSH) Connection Protocol
- RFC 4344 SSH Transport Layer Encryption Modes
- draft-ietf-secsh-filexfer-13.txt SSH File Transfer Protocol (SFTP)
- Secure Copy (SCP v2) (see RFC 4251)
- RFC 2068 HTTP

Environment

- Operating temperature: 0°C to 40°C (32°F to 104°F)
- Storage temperature: -25°C to 55°C (-13°F to 131°F)
- Relative humidity: 5% to 90%, at 40°C (104°F), non-condensing
- Storage humidity: 95% maximum relative humidity, non-condensing
- Operating altitude: 6,600 ft (2,012 m)
- Storage altitude: 15,000 ft (4,500 m) maximum

Safety Agency Approvals

- CAN/CSA-C22.2 No. 60950-1-07
- ANSI/UL 60950-1
- IEC 60950-1
- EN 60950-1 Safety of Information Technology Equipment
- EN 60825-1
- EN 60825-2

Power and Grounding

- ETS 300 132-1 Equipment Requirements for AC Power Equipment Derived from DC Sources
- ETS 300 132-2 Equipment Requirements for DC Powered Equipment
- ETS 300 253 Facility Requirements

Physical Design and Mounting

- 19-inch rack mount supporting racks compliant with:
 - ANSI/EIA -310-D
 - GR-63-CORE Seismic Zone 4

Environmental Regulatory Compliance

- EU 2011/65/EU RoHS
- EU 2012/19/EU WEEE
- EC/1907/2006 REACH

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR-SLX-9540-24S-COD-P</td>
<td>Upgrade 24×1 GbE ports to 24×10 GbE/1 GbE ports (for Extreme SLX 9540-24S)</td>
</tr>
<tr>
<td>BR-SLX-9540-2C-POD-P</td>
<td>Ports on Demand to enable 2×100 GbE/40 GbE ports (for Extreme SLX 9540-24S)</td>
</tr>
<tr>
<td>BR-SLX-9540-ADV-LIC-P</td>
<td>Advanced Feature License for MPLS, BGP-EVPN, CE2.0, NSX, OptiScale™ Internet Routing (for Extreme SLX 9540-24S and 9540-48S)</td>
</tr>
</tbody>
</table>