
1How to Build and Scale With Microservices

How to Build
and Scale With
Microservices

2How to Build and Scale With Microservices

Contents

Chapter 1: Introduction to Microservices

Chapter 2: The Business Case for Microservices

Chapter 3: The Microservices Model

Chapter 4: The Challenges You’ll Face Migrating to Microservices

Chapter 5: Starting the Migration Process

Chapter 6: Ongoing Management of Microservices

3How to Build and Scale With Microservices

Introduction to
Microservices

CHAPTER 1

This short guide discusses the benefits of
implementing a microservice-based software
architecture. Microservices are revolutionizing the way
software applications are designed, simplifying code
and enabling rapid implementation of change.

4How to Build and Scale With Microservices

Microservices are a type of software architecture where large
applications are made up of small, self-contained units working
together through APIs that are not dependent on a specific
language. Each service has a limited scope, concentrates on a
particular task, and is highly independent. This setup allows IT
managers and developers to build systems in a modular way.

Martin Fowler’s “Microservices: A Definition of This New Architectural
Term” is one of the seminal publications on microservices. He
describes some of the key characteristics of microservices as:

• Componentization: Microservices are independent units that
are easily replaced or upgraded. The units communicate with
each other and external services through remote procedure
calls and web service requests.

• Business capabilities: Legacy application development often
splits teams into areas like the “server-side team” and the
“database team.” Microservices development is built around
business capability, with collective stakeholder responsibility
for a complete stack of functions such as UX and project
management.

• Dumb pipes, smart endpoints: Microservice applications
contain their own logic. Resources that are often used are
cached easily.

• Products rather than projects: Instead of focusing on
a software project that is delivered following completion,
microservices teams treat applications as products of which
they take ownership. Teams establish an ongoing dialogue
with stakeholders, with a goal of continually matching the app
to the business function.

• Decentralized governance: Tools are built and shared to
handle similar problems on other teams.

Decoupled
Releases

Web
Application

Catalog
Application

Individual
Software Components

Dev Team

Business Capabilities

D
ec

en
tr

al
iz

ed
 G

ov
er

na
nc

e

Individual
Development Teams

Web
Service API

Analytics
Application

Client
Application

5How to Build and Scale With Microservices

What Problems Do
Microservices Help Solve?
Larger organizations run into problems when monolithic
architectures cannot be scaled, upgraded, or maintained as
they grow over time. Monolithic implementations frequently
try to serve many masters, which means that over time their
complexity grows and modification becomes difficult.

To serve clients efficiently, a monolith might end up being
stateful — that is, it maintains information about the clients it
is serving over time, which means that it also consumes more
resources. In an attempt to make monoliths easier to maintain,
an architecture group may try to enforce standards over
what technologies are used and what design principles are
followed. This means that as a monolith adds functionality,
the new implementation may not be as efficient as desired
because the standards are not tuned to accommodate that
particular use case’s needs.

Microservices architecture is an answer to that problem. It is a
software architecture where complex tasks are broken down into
small processes that operate independently and communicate
through language-agnostic APIs. Rather than accept the
enforced standards of architecture groups in large organizations,
microservices promote engagement with open formats like

HTTP, ATOM, and others, which provides enough consistency in
how communication occurs to allow great interoperability.

As applications get bigger, intricate dependencies and
connections grow. Whether you’re talking about a monolithic
architecture or smaller units, microservices let you separate
out existing and new application functionalities into
manageable and reusable components, allowing software
teams to become more agile.

Microservices: Concept
Rather Than Technology
It’s important to understand that microservices architecture is a
conceptual approach and not tied to one or more development
technologies. This allows developers to use the languages they
are most familiar with or that are most appropriate to solve a
particular problem.

All of the following technologies and more are being used to
implement microservices:

• Java

• PHP

• Python

• Node.js

• .NET

6How to Build and Scale With Microservices

The Business
Case for
Microservices

CHAPTER 2

In today’s computing environment, innovation and
speed are critical.

The movement toward microservices is generated by
the need to create new software that can enhance
and improve a monolithic system, but is also separate
from it. This decoupling from legacy systems provides
the freedom to experiment with new approaches and
rapidly iterate changes.

7How to Build and Scale With Microservices

Below are some of the business cases for microservices:

Adaptability and Innovation
Microservices are also making an enormous impact on how
organizations think through their business processes, what
products they bring to market, and how they are going to
support their products with customers in the marketplace.

Because of the explosion of mobile devices and the always-
shifting wants and needs of consumers, IT professionals have to
adapt just as quickly. Microservices architecture is the vehicle
in which they are creating rapid change. It is changing not only
the technology but also how organizations evaluate business
opportunities. On another level, it is altering the organization
of talent, encouraging a culture of innovation, expanding the
scope of individual responsibility, and empowering smart
people to take chances.

Agility and Speed
Enterprises have always been able to build large applications that
manage the complexity of their business. But that doesn’t mean
they’ve been able to deliver or modify these applications quickly
to adjust to business requirements and customer demands.
Many are therefore adapting their legacy systems to utilize
microservices architecture to get rid of dependencies and be
able to test and deploy code changes quickly, making them more
adaptable to customer needs.

Companies that have adopted fast development methodologies
like agile software are constantly looking for greater simplicity
and the ability to make changes rapidly without going through
numerous committees. A microservices approach is often the
answer. The code is small, and every software engineer makes
production changes on an ongoing basis.

8How to Build and Scale With Microservices

Transforming Software
Development
The beauty of microservices is that it frees developers from having
to use “company standard” languages or frameworks. Components
can be created with Ruby, Java, or JavaScript/Node.js, depending
on the preference of the programmer and requirements of
the particular business problem the microservice addresses.
Programmers can either stick with languages and development
tools they know, like, and trust, or choose to adopt something
new — which boosts productivity and satisfaction on the job.

This is a transformation in how traditional software development
takes place. The speed at which code changes in mobile apps
and modern websites is way too fast for the legacy software
development system. Constantly evolving apps require a new
approach, like microservices.

Breaking Down Barriers
The rise of microservices is also changing an IT culture that is
deeply ingrained: a division between software development
and operations. Because it is so easy to deploy microservices,
developers are getting involved in code deployments and
production monitoring.

This contrasts with the traditional scenario where developers
would write code and “throw it over the fence” for another team
(Ops) to deploy and maintain. Today, developers and Ops are
merging into small, focused teams responsible for building,
deploying, and monitoring application components. This
practice and philosophy is now being referred to as DevOps.

As a result, microservices help break down barriers between
the development of software and its operation — something
that’s critical during a time when the pace of change is dizzying,
and the need for speed in application development is greater
than ever before.

Developers OpsDevOps

9How to Build and Scale With Microservices

The Microservices
Model

CHAPTER 3

We’re rushing headlong into an always-on,
digital-centric, mobile world. Organizations
that fail to modify their approach to
technology will be left by the wayside
as others incorporate highly flexible and
scalable architectures that adapt quickly
and efficiently to the demands of the
modern marketplace.

10How to Build and Scale With Microservices

The rapid rise in the popularity of microservices was driven by
these market influences. In fact, Forrester Research notes that
a new architectural approach has emerged that offers agility,
flexibility, and scalability:

The Four-Tier Engagement Platform. As you can see, this approach is broken down into
different layers:

Services tier

Mobile clients
Wearables
Internet of Things
Responsible for experience delivery

Existing on-premises systems of record, services,
and data
External third-party services (e.g., Box, Twilio,
Urban Airships)

Optimizes content for proper display on device
Caches content for performant delivery
Drives personalization by using analytics to
monitor user behavior

Aggregates and federates services tier data
Provides discovery for the underlying service library
Performs data protocol translation
(e.g., SOAP to JSON)

Client tier

Delivery tier

Aggregation tier

• Client tier: The delivery of customer experience through
mobile clients and the Internet of Things.

• Delivery tier: Optimizes user experience by device while
personalizing content by monitoring user actions.

• Aggregation tier: Aggregates data from the services
tier while performing data protocol translation.

• Services tier: The portfolio of external services such as
Twilio and Box, as well as existing data, services, and record
systems already in-house.

https://www.forrester.com/report/Mobile+Needs+A+FourTier+Engagement+Platform/-/E-RES100161

11How to Build and Scale With Microservices

The services tier is where microservices fits in, with Forrester noting:

“A services tier spans internally and externally provisioned data and
functionality. This final architectural element dynamically composes data
and business processes through a set of continuously deployable services.
This tier provides data to the layers above without concern for how
that data is consumed; the other layers can exist behind the corporate
firewall or externally — or both! This allows for the ultimate flexibility in the
consumption and dynamic composition of services, whether leveraged by
apps or by the evolving partner ecosystem.”

The shift to microservices is clear. The adoption is driven by the
confluence of mobile computing, inexpensive hardware, cloud
computing, and low-cost storage.

https://go.forrester.com/blogs/13-11-20-mobile_needs_a_four_tier_engagement_platform/

12How to Build and Scale With Microservices

Data Coupling
Microservices architecture is loosely coupled with data
often communicated through APIs. It’s not unusual for
one microservice to have less than a couple hundred
lines of code and manage a single task. Loose coupling
relies on three things:

Limited scope and focused intelligence built-in

Intelligence set apart from the messaging function

Tolerance for a wide variety of modifications of
microservices with similar functions

The APIs translate a specification that creates a
contract which indicates what service is provided and
how other programs are supposed to use it. Using APIs to
decouple services creates a tremendous amount of
freedom and flexibility.

13How to Build and Scale With Microservices

Microservices and Containers
When discussing microservices, it’s hard not to mention
containers. As you’re probably aware, containers allow
application components (including microservices) to be
packaged as small, self-contained, highly scalable modules.
Containers have many similarities to virtual machine
instances. However, they are much simpler to manage and do
not require a hypervisor layer to function.

Major container service providers include Docker and
Kubernetes, who offer frameworks and orchestration to help
build, manage, and deploy your applications. Containers fit in
well with the microservice model of breaking down application
functionality into small, manageable components.

Multiple containers can be deployed in clusters and managed
using a range of tools. Many containers will be prebuilt
components that can be layered together to build up
application images. This makes it easy to update individual
containers while an application is still running — reducing the
need for downtime and any impact on business continuity.
This is particularly beneficial for microservice-based
applications where frequent deployments of code changes
to production are the norm.

https://www.docker.com/
https://kubernetes.io/

14How to Build and Scale With Microservices

The Challenges
of Migrating to
Microservices

CHAPTER 4

A microservices architecture significantly enhances
the agility and accelerates the velocity of continuous
integration and delivery of enterprise applications.

However, this approach can also result in an
exponentially larger number of microservices that
are loosely coupled and communicate primarily
via asynchronous mechanisms, creating increased
complexity and a significant management challenge.

15How to Build and Scale With Microservices

Operations and infrastructure
With microservices, things can spin out of control
due to the multitude of operations going on at once.
As a result, the development group has to work
more closely with operations than ever before.

Monitoring
When you add additional new services, your
ability to maintain and configure monitoring for
them becomes a challenge. You’ll have to lean on
automation to make sure monitoring can keep up
with the changes in the scale of services.

DevOps Guidance
DevOps is critical in determining where and when
microservices should be utilized. It is an important decision
because trying to combine microservices with bloated,
monolithic legacy systems may not always work. Changes
cannot be made fast enough. With microservices, services
are continually being developed and refined on-the-fly.
DevOps must ensure updated components are put into
production, working closely with internal stakeholders and
suppliers to incorporate updates.

Below are some challenges to keep in mind:

Legacy considerations
Consider a legacy system coded in C and
running on multiple mainframes. It has been
running successfully for years and delivers the
core competency of the business reliably.
Should you attempt to rewrite the code to
accommodate new features?

A gradual approach is recommended because
new microservices can be tested quickly
without interrupting the reliability of the current
monolithic structure. You can easily use
microservices to create new features through
the legacy API. Also consider modularization of
the legacy architecture so you can still share
code and deployments, but move modules into
microservices independently if needed.

Security
The proliferation of services in this architecture
creates more soft targets for hackers and
criminals. With a variety of operating systems,
frameworks, and languages to keep track of, the
security group has their hands full making sure the
system isn’t vulnerable.

16How to Build and Scale With Microservices

Support
It is significantly harder to support and maintain
a microservices setup than a monolithic app.
Each one may be made from a wide variety
of frameworks and languages. The infinite
complexities of support influence decisions on
adding services. If a team member wants to create
a new service in an esoteric language, it impacts
the whole team because they have to make sure it
can work with the existing setup.

Requests
One way to send data between services is
using request headers. Request headers can
contain details like authentication that ultimately
reduce the number of requests you need to
make. However, when this is happening across a
myriad of services, it can increase the need for
coordination with members of other teams.

Caching
Caching helps reduce the number of requests
you’ll need to make. Caching requests that involve
a multitude of services can grow complicated
quickly, necessitating communication from
different services and their development teams.

Fault tolerance
The watchword with microservices is
“interdependence.” Services have to be able to
withstand outright failures and inexplicable timeouts
when communicating with each other. Failures
can multiply quickly, creating a cascading effect
through some services, potentially spiking services
needlessly. Fault tolerance in this environment is
much more complicated than a monolithic system.

Human resourcing
When it comes to microservices,
managing staffing issues is as complex and
challenging — perhaps more so — than code
and technology obstacles. You can easily have so
many team members working on microservices
that you may not have enough staff available to
review changes.

As you can see, while there are certainly benefits to
microservices, there are also challenges that come with it.
However, the benefits of creating loosely coupled components
by independent teams far outweigh the disadvantages. In our
current computing environment, speed and flexibility are the
keys to success, and microservices deliver both.

17How to Build and Scale With Microservices

Starting the
Migration Process

CHAPTER 5

18How to Build and Scale With Microservices

So how do you handle a migration to microservices?

Owen Garrett wrote an essay for InfoWorld outlining three
different stages of microservices deployment:

Componentize, Collaborate, and Connect.

1. COMPONENTIZE
To start, choose a pilot project you want to work on. The best
approach may be to select a section of an existing monolithic
app you believe can be moved to a microservice without
much difficulty. You want to create a microservice that you can
develop, test, and deploy.

Next, decide on the application functionality this
microservice will expose and then create an API using tools
familiar to your engineers. Remember that microservices are
intended to be simple to design, code, and consume. It is far
better to create multiple microservices than try to make a
single service too complex. In this way, you’ll promote service
reuse and begin to develop a system of continuous delivery
you can tweak and modify.

Component

Connect Collaborate

https://www.infoworld.com/article/2936148/application-development/three-keys-to-successful-microservices.html

19How to Build and Scale With Microservices

3. CONNECTION
Finally, building the individual components of a microservice is
only the beginning. The functionality provided by the service
endpoints must now be integrated into your application
stack. In other words, they must be connected, and the results
published to promote reuse across other Dev teams.

In this way, microservices can be shown to be more flexible and
adaptable than previous approaches such as service-oriented
architecture (SOA).

2. COLLABORATION
The knowledge you gain when you develop the pilot project
should be shared across the entire development staff.
This gets them on board with the process and makes it
much easier to gain their support when you expand your
microservices development.

What’s more, each team must have a complete skillset to
create a service. This includes the data, presentation, and logic
— from beginning to end. Collaboration comes down to sharing
technology standards and APIs.

Implementing microservices also provides an opportunity
to review your approach to performance engineering.
The simple consumer endpoint model lends itself well to
early performance testing, enabling Dev to trend service
endpoint performance in-sprint, across builds, and against
performance SLAs.

20How to Build and Scale With Microservices

Ongoing
Management
of Microservices

CHAPTER 6

21How to Build and Scale With Microservices

While microservices can certainly improve the agility and
velocity of enterprise application delivery, there are increased
complexity and management challenges which must be
addressed to ensure that your microservices architecture is
functioning efficiently.

For example, as you add more microservices, you have to
ensure they can scale together. More granularity means more
moving parts, which increases complexity.

This requires enterprise-wide visibility, and AppDynamics’
end-to-end monitoring solution offers the following
microservice-focused support:

TRACK MICROSERVICES DEPLOYED IN AN
ELASTIC INFRASTRUCTURE

• Efficiently track microservices deployed in an elastic
infrastructure such as containers or cloud where nodes
scale up and down very rapidly

• Retain historical data about the microservice and
infrastructure nodes and correlate it with past and future
instances of the microservice

CORRELATE YOUR APPLICATION, CONTAINER,
AND UNDERLYING HOST METRICS

• Automatic discovery of entry and exit points of
your microservice as service endpoints for focused
microservices monitoring

• Track the key performance indicators (KPIs)
of your microservice as distinct from
transaction-based monitoring

• Drill down and isolate the root cause of microservice
performance issues

CHECK AVAILABILITY OF MICROSERVICES
DEPLOYED WITHIN YOUR NETWORK
OR EXTERNALLY

• Check availability and basic performance metrics for
HTTP-based microservices that are not monitored by
an AppDynamics agent

SCHEDULE A DEMOGUIDED TOUR

Conclusion In summary, AppDynamics helps to simplify your microservice
implementation and ongoing management by giving you
real-time visibility into service performance and availability,
in addition to comprehensive application monitoring.

WANT TO LEARN MORE ABOUT APPDYNAMICS?

Take a Guided Tour or
Schedule a Demo Today

https://www.appdynamics.com/lp/guided-tour-application-performance-management/
https://www.appdynamics.com/lp/schedule-a-demo/

