**Highlights**

- High-density, fixed form factor router with 12 x 100/40 GbE ports and maximum of 24 x 1/10 GbE ports
- Compact 1U form factor for reduced power and footprint
- Ultra-deep buffers of 6GB to ensure optimal performance to handle traffic virtually any network for bursty traffic patterns
- Provides industry leading Extreme routing for IPv4, IPv6, advanced MPLS/VPLS, Carrier Ethernet, and VXLAN overlay technology
- Route scale: Up to 5M IPv4 and 2.5M IPv6.
- Embedded network visibility with Extreme Insight Architecture for real-time monitoring, streamlined analysis and troubleshooting
- Pay as you grow flexibility to enable ports on demand and capacity with demand licensing
- Hot-swappable modular power and fans
- AC and DC power supply options

---

**ExtremeRouting™ SLX 9640**

High Performance Fixed Router for WAN Edge, Internet Border Routing, Interconnect at Service Provider and Enterprise Data Centers

With cloud services, HD video streaming, Internet of Things (IoT), and increasing mobile data usage for billions of devices becoming standard, organizations must modernize the way they communicate and conduct business. Increasingly organizations are expanding from on premise, private and hybrid cloud to full multi-cloud architectures to address agility, scale, security, reliability and cost requirements as digital transformation reshapes their business environment.

The SLX 9640 is designed to cost-effectively deliver the scale and performance needed to address the explosive growth in network bandwidth, devices and services.

The flexible architecture is designed for optimal operations, supporting diverse deployment options - such as Internet border, collapsed border routing and data center interconnect - that require deep buffering for lossless forwarding. In addition, the SLX 9640 helps address the increasing agility and analytics needs of digital organizations with innovative network automation and visibility build on the Extreme Insight Architecture.
Flexible Border Routing with Internet Scale, Ultra-Deep Buffers, MPLS and EVPN

The SLX 9640 is a very powerful compact deep buffer Internet border router, providing a cost-efficient solution that is purpose-built for the most demanding service provider and enterprise data centers and MAN/WAN applications. The robust system architecture supported by SLX-OS and a versatile feature set including IPv4, IPv6, and MPLS/VPLS with Carrier Ethernet 2.0 and OAM capabilities to provide deployment flexibility.

Strong Network Security

Security is a top concern for every network design. The border routers are directly exposed to raw Internet traffic and therefore can be the first defense against malicious activity directed at your internal networks. Having multiple layers of security enhances protection. By starting at the border routers, you can utilize features such as BGP FlowSpec to mitigate directed denial of service attacks (DDoS) and advanced access control lists (ACLs) for CPU and data plane protection of the routers themselves. These features are critical components to your overall multilayered security strategy.

High-Availability and Reliability

The SLX 9640 delivers high performance and reliability required by the most advanced routers. It is designed for high availability from both a software and hardware perspective, such as a clear separation between the control plane and data plane and redundant power supplies and fan modules.

Management

The SLX 9640 can be managed in a variety of ways. REST, NETCONF management interface or simple on-box management functions are delivered with CLI for manual configuration. For centralized management, the Extreme Management Center (XMC) delivers a comprehensive unified management capability. XMC provides a consolidated view of users, devices and applications for wired and wireless networks - from data center to edge.

Modular, Virtualized Operation System

The SLX 9640 runs Extreme SLX-OS, a fully virtualized Linux-based operating system that delivers process-level resiliency and fault isolation. SLX-OS supports advanced switching features and is highly programmable with support for REST API with the YANG data model, Python, and NETCONF. It is based on Ubuntu Linux, which offers all the advantages of open source and access to commonly used Linux tools.

Pay as You Grow Flexibility

The SLX 9640 offers a unique procurement model with ports on demand and capacity demand licensing. The SLX can be purchased in a variety of available active port speeds and combinations, thus making it more cost-effective overpaying for all ports on the physical hardware. If additional port capacity is required in the future, simply apply a license to enable the ports on the fly.
Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Extreme SLX 9640</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum 100 GbE/40 GbE ports</td>
<td>12</td>
</tr>
<tr>
<td>Maximum 10/1 GbE, 100 Meg</td>
<td>24</td>
</tr>
<tr>
<td>Switch fabric capacity (data rate, full duplex)</td>
<td>900 Gbps</td>
</tr>
<tr>
<td>Forwarding capacity (data rate, full duplex)</td>
<td>810 Mpps</td>
</tr>
<tr>
<td>Airflow</td>
<td>Front to back or back to front (orderable option)</td>
</tr>
<tr>
<td>Fan module slots</td>
<td>5 (4+1 redundancy)</td>
</tr>
<tr>
<td>Maximum AC power supply rating</td>
<td>650 W</td>
</tr>
<tr>
<td>Power Supplies Modular</td>
<td>650W AC power supply (up to two PSUs)</td>
</tr>
<tr>
<td>Power Supplies Modular</td>
<td>650W DC power supply (up to two PSUs)</td>
</tr>
<tr>
<td>Height</td>
<td>1.75 in./4.45 cm</td>
</tr>
<tr>
<td>Width</td>
<td>17.25 in./43.82 cm</td>
</tr>
<tr>
<td>Depth chassis only without cable management or fan handles</td>
<td>18.25in./46.36 cm</td>
</tr>
<tr>
<td>Weight Chassis</td>
<td>2 PS, 6 fans: 23.42 lb, 10.62 kg</td>
</tr>
<tr>
<td>Weight Chassis</td>
<td>2 PS, 6 fans, rack mount kit: 25.03 lb, 11.35 kg</td>
</tr>
<tr>
<td>Weight Empty chassis (no PS, no fans)</td>
<td>17.68 lb, 8.02 kg, Fan: 0.39 lb, 0.18 kg, PS: 1.68 lb, 0.76 kg</td>
</tr>
<tr>
<td>Port type</td>
<td>100 GbE QSFP-28, 40 GbE QSFP+, 10 GbE SFP+, 1 GbE SFP+</td>
</tr>
<tr>
<td>Packet buffers per switch</td>
<td>6 GB</td>
</tr>
<tr>
<td>MAC address scale</td>
<td>640,000</td>
</tr>
<tr>
<td>VLAN scale</td>
<td>4,096</td>
</tr>
<tr>
<td>Route scale</td>
<td>5,000,000 (IPv4), 2,500,000 (IPv6)</td>
</tr>
<tr>
<td>Jumbo frame (maximum size)</td>
<td>9,216 bytes</td>
</tr>
<tr>
<td>QoS priority queues (per port)</td>
<td>8</td>
</tr>
<tr>
<td>MPLS</td>
<td>With Extreme SLX-OS advanced feature license</td>
</tr>
</tbody>
</table>

2 Software upgrade licenses are available for the Extreme SLX 9640-24S for Ports on Demand (PoD) to enable 100 GbE/40 GbE ports.

Power and Heat Dissipation

<table>
<thead>
<tr>
<th>650W AC PSU 23-1000076-02/23-1000075-02</th>
<th>650W DC PSU 23-1000078-02/23-1000077-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td></td>
</tr>
<tr>
<td>2.15&quot; x 9.0&quot; x 1.57&quot;</td>
<td>2.15&quot; x 9.0&quot; x 1.57&quot;</td>
</tr>
<tr>
<td>54.5mm x 228.6mm x 40mm</td>
<td>54.5mm x 228.6mm x 40mm</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>1.63 lb (0.741 kg)</td>
<td>1.74 lb (0.789 kg)</td>
</tr>
<tr>
<td>Voltage Input Range</td>
<td></td>
</tr>
<tr>
<td>90 to 264 Vac</td>
<td>-44 to -72 Vdc</td>
</tr>
<tr>
<td>Line Frequency Range</td>
<td></td>
</tr>
<tr>
<td>47 to 63 Hz</td>
<td>N/A</td>
</tr>
<tr>
<td>PSU Input Socket</td>
<td></td>
</tr>
<tr>
<td>IEC 320, C14</td>
<td>IEC 320, C14</td>
</tr>
<tr>
<td>Maximum Heat Dissipation (BTU/hr)</td>
<td>Maximum Power Dissipation (BTU/hr)</td>
</tr>
<tr>
<td>(Fans high, all ports 100% traffic, 2 PSU)</td>
<td>(Fans high, all ports 100% traffic, 2 PSU)</td>
</tr>
<tr>
<td>1,481 BTU/hr</td>
<td>434 W</td>
</tr>
</tbody>
</table>

Optics/Transceivers: For the latest and most up-to-date list of the optics/transceivers supported on this platform, refer to our Extreme Optics Compatibility Tool at https://optics.extremenetworks.com/SLX/Model/SLX9640/
Acoustics

<table>
<thead>
<tr>
<th>Location</th>
<th>Bystander Sound Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>51.9 dBA, re: 20 µPa</td>
</tr>
<tr>
<td>Rear</td>
<td>55.7 dBA, re: 20 µPa</td>
</tr>
<tr>
<td>Right Side</td>
<td>53.4 dBA, re: 20 µPa</td>
</tr>
<tr>
<td>Left Side</td>
<td>53.4 dBA, re: 20 µPa</td>
</tr>
<tr>
<td>Average</td>
<td>53.8 dBA, re: 20 µPa</td>
</tr>
</tbody>
</table>

Note: Bystander A-weighted Sound Pressure Level, LpAm-By, measured at 27°C ambient.

Specifications

IEEE Compliance
- Ethernet
  - 802.3-2005 CSMA/CD Access Method and Physical Layer Specifications
  - 802.3ab 1000BASE-T
  - 802.3ae 10 Gigabit Ethernet
  - 802.3u 100BASE-TX, 100BASE-T4, 1000BASE-FX Fast Ethernet at 100 Mbps with Auto-Negotiation
  - 802.3x Flow Control
  - 802.3z 1000BASE-X Gigabit Ethernet over fiber optic at 1 Gbps
  - 802.3ad Link Aggregation
  - 802.1Q Virtual Bridged LANs
  - 802.1D MAC Bridges
  - 802.1w Rapid STP
  - 802.1s Multiple Spanning Trees
  - 802.1ag Connectivity Fault Management (CFM)
  - 802.1ax Link Layer Discovery Protocol
  - 802.1x Port-Based Network Access Control
  - 802.3ah Ethernet in the First Mile Link OAM3
  - ITU-T G.8013/Y1731 OAM mechanisms for Ethernet

RFC Compliance
- General Protocols
  - RFC 768 UDP
  - RFC 791 IP
  - RFC 792 ICMP
  - RFC 793 TCP
  - RFC 826 ARP
  - RFC 854 Telnet
  - RFC 894 IP over Ethernet
  - RFC 803 RARP
  - RFC 906 TFTP Bootstrap
  - RFC 950 Subnet
  - RFC 951 BootP
  - RFC 1027 Proxy ARP
  - RFC 1042 Standard for The Transmission of IP
  - RFC 1166 Internet Numbers
  - RFC 1122 Host Extensions for IP Multicasting
  - RFC 1191 Path MTU Discovery
  - RFC 1340 Assigned Numbers
  - RFC 1542 BootP Extensions
  - RFC 1591 DNS (client)
  - RFC 1812 Requirements for IPv4 Routers
  - RFC 1858 Security Considerations for IP Fragment Filtering
  - RFC 2131 BootP/DHCP Helper
  - RFC 2578 Structure of Management Information Version 2
  - RFC 2784 Generic Routing Encapsulation
  - RFC 3021 Using 32-Bit Prefixes on IPv4 Point-to-Point Links
  - RFC 3768 VRDP
  - RFC 4001 Textual Conventions for Internet Network Addresses
  - RFC 4632 Classless Interdomain Routing (CIDR)
  - RFC 4950 ICMP Extensions for MPLS
  - RFC 5880 Bidirectional Forwarding Detection

- BGP4
  - RFC 1745 OSPF Interactions
  - RFC 1772 Application of BGP in the Internet
  - RFC 1997 Communities and Attributes
  - RFC 2385 BGP Session Protection via TCP MD5
  - RFC 2498 Route Flap Dampening
  - RFC 2819 Route Refresh Capability
  - RFC 3392 Capability Advertisement
  - RFC 3682 Generalized TLV Security Mechanism for eBGP Session Protection
  - RFC 4257 BGPv4
  - RFC 4364 BGP/MPLS IP Virtual Private Networks
  - RFC 4456 Route Reflection
  - RFC 4486 Sub Codes for BGP (RFC2191)
  - RFC 4724 Graceful Restart Mechanism for BGP
  - RFC 4893 BGP Support for Four-octet AS Number Space
  - RFC 4824 BGP Support for Four-octet AS Number Space
  - RFC 5065 BGP4 Confederations
  - RFC 5291 Outbound Route Filtering Capability for BGP
  - RFC 5396 Textual Representation of Autonomous System (AS) Numbers
  - RFC 5668 4-Octet AS Specific BGP Extended Community
  - draft-ietf-bgp-bgp-pc-01.txt - BGP Prefix Independent Convergence
  - RFC 8092 BGP Large Community Attribute sFlow BGP AS path

- OSPF
  - RFC 1745 OSPF Interactions
  - RFC 1765 OSPF Database Overview
  - RFC 2154 OSPF with Digital Signature (Password, MD-5)
  - RFC 2958 OSPF v2
  - RFC 3101 OSPF NSSA
  - RFC 3137 OSPF Stub Router Advertisement
  - RFC 3630 TE Extensions to OSPF v2
  - RFC 3623 Graceful OSPF Restart
  - RFC 4222 Prioritized Treatment of Specic OSPF Version 2
  - RFC 5250 OSPF Opaque LSA Option

- IS-IS
  - RFC 1195 Routing in TCP/IP and Dual Environments
  - RFC 1142 OSI IS-IS Intra-domain Routing Protocol
  - RFC 3277 IS-IS Blackhole Avoidance
  - RFC 5120 IS-IS Multi-Topology Support
  - RFC 5302 Domain-wide Prefix Distribution
  - RFC 5303 Three-Way Handshake for IS-IS Point-to-Point
  - RFC 5304 IS-IS Cryptographic Authentication (MD-5)
  - RFC 5306 Restart Signaling for IS-IS (helper mode)
  - RFC 5309 Point-to-point operation over LAN in link state routing protocols
• IPv4 Multicast  
  RFC 1122 IGMP v1  
  RFC 2236 IGMP v2  
  RFC 4601 PIM-DM  
  RFC 4607 PIM-SSM  
  RFC 4610 Anycast RP using PIM  
  RFC 5059 BSR for PIM  
  PIM IPv4 MCT  

• QOS  
  RFC 2474 DiffServ Definition  
  RFC 2475 An Architecture for Differentiated Services  
  RFC 2597 Assured Forwarding PHB Group  
  RFC 2697 Single Rate Three-Color Marker  
  RFC 2698 A Two-Rate Three-Color Marker  
  RFC 3246 An Expedited Forwarding PHB  

• IPv6 Core  
  RFC 1883 IPv6 unicast address allocation architecture  
  RFC 1981 IPv6 Path MTU Discovery  
  RFC 2375 IPv6 Multicast Address Assignments  
  RFC 2450 Proposed TLA and NLA Assignment Rules  
  RFC 2640 IPv6 Specification  
  RFC 4862 IPv6 Stateless Address - Auto Configuration  
  RFC 2464 Transmission of IPv6 over Ethernet Networks  
  RFC 2471 IPv6 Testing Address allocation  
  RFC 2771 IPv6 Router Alert Option  
  RFC 3587 IPv6 Global Unicast - Address Format  
  RFC 4193 Unique Local IPv6 Unicast Addresses  
  RFC 4291 IPv6 Addressing Architecture  
  RFC 4301 IP Security Architecture  
  RFC 4303 Encapsulation Security Payload  
  RFC 4305 ESP and AH Cryptography  
  RFC 4443 ICMPv6  
  RFC 4552 Auth for OSPFv3 using AH / ESP  
  RFC 4835 Cryptographic Alg. Req. for ESP  
  RFC 4861 Neighbor Discovery for IPv6 (IPv6)  
  RFC 3315 Dynamic Host Configuration Protocol for IPv6 (DHCPv6)  

• IPv6 Routing  
  RFC 3340 OSPF for IPv6  
  RFC 2545 Use of BGP-MP for IPv6  
  RFC 5208 Routing IPv6 with IS-IS  
  Support for IPv6 Router Advertisements with DNS Attributes  
  RFC 8106 Support for IPv6 Router Advertisements with DNS Attributes  
  RFC 6164 Using 127-Bit IPv6 Prefixes on Inter-Router Links  

• MPLS  
  RFC 2205 RSVP v1 Functional Specification  
  RFC 2209 RSVP v1 Message Processing Rules  
  RFC 2702 TE over MPLS  
  RFC 2961 RSVP Refresh Overhead Reduction Extensions  
  RFC 3031 MPLS Architecture  
  RFC 3032 MPLS Label Stack Encoding  
  RFC 3037 LDP Applicability  
  RFC 3097 RSVP Cryptographic Authentication  
  RFC 3209 RSVP-TE  
  RFC 3270 MPLS Support of Differentiated Services  
  RFC 3478 LDP Graceful Restart  
  RFC 3815 Definition of Managed Objects for the MPLS LDP  
  RFC 4080 Fast Reroute Extensions to RSVP-TE for LSP Tunnels  
  RFC 4364 BGP/MPLS IP Virtual Private Networks  
  RFC 4379 OAM  
  RFC 4448 Encapsulation methods for transport of Ethernet over MPLS networks  
  RFC 5036 LDP Specification  
  RFC 5305 ISIS-TE  
  RFC 5443 LDP IG P Synchronization  
  RFC 5561 LDP Capabilities  
  RFC 5712 MPLS Traffic Engineering Soft Preemption  
  RFC 5918 LDP "Typical Wildcard" FEC  
  RFC 5919 Signaling LDP Label Advertisement Completion  

• Layer 2 VPN and PWE3  
  RFC 3543 T1 T Processing in MPLS networks  
  RFC 3985 Pseudowire Emulation Edge to Edge (PWE3) Architecture  
  RFC 4364 BGP/MPLS IP Virtual Private Networks4  
  RFC 4447 Pseudowire Setup and Maintenance using LDP4  
  RFC 4448 Encapsulation Methods for Transport of Ethernet over MPLS Networks  
  RFC 4664 Framework for Layer 2 Virtual Private Networks  
  RFC 4665 Service Requirements for Layer 2 Provider-Provisioned Virtual Private Networks  
  RFC 4762 VPLS using LDP Signaling  
  RFC 5542 Definitions of Textual Conventions for Pseudowire (PW) Management  
  RFC 6391 Flow-Aware Transport of Pseudowires  
  RFC 6870 PW Preferential Forwarding Status Bit3  
  RFC 7432 BGP MPLS-Based Ethernet VPN - Partial4  
  RFC 7548 Virtual Extensible Local Area Network (VXLAN): A Framework for Overlayering Virtualized Layer 2 Networks over Layer 3 Networks (Partial)  
  draft-sd-12vpn-evpn-overlay-03 (A Network Virtualization Overlay Solution using EVPN) Partial4  
  draft-ieft-bess-evpn-overlay-04 (A Network Virtualization Overlay Solution using EVPN with VXLAN encapsulation) Partial4  
  draft-ieft-bess-evpn-overlay-12 (A Network Virtualization Overlay Solution using EVPN)  
  draft-ieft-bess-evpn-ignp-mld-proxy-00 (IGMP and MLD Proxy for EVPN)  

Management and Visibility  
• Integrated industry-standard Command Line Interface (CLI)  
  RFC 854 Telnet  
  RFC 2068 HTTP  
  RFC 2818 HTTPS  
  RFC 3176 sFlow v5  
  sFlow extension to VXLAN  
  RFC 4253 Secure Shell (SSH)  
  Secure Copy (SCP v2)  
  SFTP  
  RFC 8040 RESTCONF Protocol - PATCH, PUT, POST, DELETE support.  
  RFC 5905 Network Time Protocol Version 4  
  RFC 5986 Uniform Resource Identifier (URI); Generic Syntax  
  RFC 6241 NETCONF Configuration Protocol (Partial)  
  RFC 4742 "Using the NETCONF Configuration Protocol over Secure Shell (SSH)"  
  RFC 6020, "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)"  
  RFC 6021, "Common YANG Data Types"  
  RFC 4741 NETCONF (Partial)  
  Chrome  
  Curl  
  Tcadump  
  Wireshark  
  SNMP Infrastructure (v1, v2c, v3)  
  RFC 1157 Simple Network Management Protocol  
  RFC 1908 Coexistence between Version 1 and Version 2 of the Internet-standard Network Management Framework  
  RFC 257/ Structure of Management Information Version 2  
  RFC 2579 Textual Conventions for SMIV2
• RFC 2580 Conformance Statements for SMIV2
• RFC 3410 Introduction and Applicability Statements for Internet
  Standard Management Framework
• RFC 3411 An Architecture for Describing SNMP Management
  Frameworks
• RFC 3412 Message Processing and Dispatching
• RFC 3413 SNMP Applications
• RFC 3414 User-based Security Model
• RFC 3415 View-based Access Control Model
• RFC 3416 Version 2 of SNMP Protocol Operations
• RFC 3417 Transport Mappings
• RFC 3418 Management Information Base (MIB) for the SNMP
• RFC 3584 Coexistence between Version 1, Version 2, and Version 3 of
  the Internet-standard Network Management Framework
• RFC 3826 The Advanced Encryption Standard (AES) Cipher Algorithm
  in the SNMP User-based Security Model
• SNMP MIBs
  IANA-ADDRESS-FAMILY-NUMBERS-MIB
  IANA-IF-MIB
• sFlow v5 MIB
• rfc1213 Management Information Base for Network Management of
  TCP/IP-based Internets: MIB-II
• RFC 2790 Host Resource MIB
• RFC 2819 RMON Groups 1, 2, 3, 9
• RFC 2863 The Interfaces Group MIB (IF)
• RFC 3199 Diffserv MIB
• RFC 3635 Etherlike Interface Type MIB
• RFC 3811 MPLS TC STD MIB
• RFC 3812 MPLS TE STD MIB
• RFC 3813 MPLS LSR MIB
• RFC 4037 Textual Conventions for Internet Network Addresses
• RFC 4022 Textual Conventions for Internet Network Addresses (TCP)
• RFC 4113 Management Information Base for the User Datagram
  Protocol (UDP)
• RFC 4133 Entity MIB
• RFC 4273 BGP-4 MIB
• RFC 4188 Bridge MIB
• RFC 4292 IP Forwarding Table MIB (IP-FORWARD)
• RFC 4293 Management Information Base for the Internet Protocol (IP)
• RFC 4363 Dot1q MIB
• RFC 4444 IS-IS MIB
• RFC 4750 OSPF v2 MIB
• RFC 4878 DOT3-OAM-MIB
• RFC 7257 VPLS MIB (Partial)
• RFC 7531 BFD MIB
• IEEE/MEF MIBs
• IEEE-802 LLDP MIB
• MEF-RESTCONF-MIB
• IEEE-8021-CFM-MIB
• IEEE-8021-CFM-V2-MIB

Element Security
• AAA
• Username/Password (Challenge and Response)
• Bi-level Access Mode (Standard and EXEC Level)
• Role-Based Access Control (RBAC)
• RFC 2865 RADIUS
• RFC 2866 RADIUS Accounting
• TACACS+/RADIUS+ draft-grant-tacacs-02 TACACS+ - Command
  Authorization, Authentication, Accounting (RFC 5905 NTP Version 4)
• NTP 4.2.8p 10
• RFC 5961 TCP Security
• RFC 4250 Secure Shell (SSH) Protocol Assigned Numbers
• RFC 4251 Secure Shell (SSH) Protocol Architecture
• RFC 4252 Secure Shell (SSH) Authentication Protocol

Environment
• Operating temperature: 0°C to 40°C (32°F to 104°F)
• Storage temperature: -25°C to 55°C (-13°F to 131°F)
• Relative humidity: 5% to 90%, at 40°C (104°F), non-condensing
• Storage humidity: 95% maximum relative humidity, non-condensing
• Operating altitude: 6,600 ft (2,012 m)
• Storage altitude: 15,000 ft (4,500 m) maximum

Safety Agency Approvals
• CAN/CSA-C22.2 No. 60950-1-07
• ANSI/UL 60950-1
• IEC 60950-1
• EN 60950-1 Safety of Information Technology Equipment
• EN 60825-1
• EN 60825-2

Power and Grounding
• ETS 300 122-1 Equipment Requirements for AC Power Equipment
  Derived from DC Sources
• ETS 300 122-2 Equipment Requirements for DC Powered Equipment
• ETS 300 253 Facility Requirements

Physical Design and Mounting
• 19-inch rack mount, supporting racks compliant with:
  - ANSI/EIA-310-D
  - GR-63-CORE Seismic Zone 4

Environmental Regulatory Compliance
• EU 2011/65/EU RoHS
• EU 2012/19/EU WEEE
• EC/1907/2006 REAC
## Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Base Unit</strong></td>
<td></td>
</tr>
<tr>
<td>EN-SLX-9640-24S</td>
<td>Base unit with 24 1G/10G SFP+ ports, 4 10Gb/25Gb/40Gb/50Gb/100Gb capable QSFP28 ports, 2 unpopulated power supply slots, 6 unpopulated fan slots, and a 4 post rack mount kit.</td>
</tr>
<tr>
<td>EN-SLX-9640-24S-AC-F</td>
<td>Base unit with 24 1G/10G SFP+ ports, 4 10Gb/25Gb/40Gb/50Gb/100Gb capable QSFP28 ports, 1 AC power supply, 6 fan modules, front-to-back airflow, and a 4 post rack mount kit.</td>
</tr>
<tr>
<td>EN-SLX-9640-24S-I2C</td>
<td>Base unit with 24 1G/10G SFP+ ports, 12 10Gb/25Gb/40Gb/50Gb/100Gb capable QSFP28 ports, 2 unpopulated power supply slots, 6 unpopulated fan slots, and a 4 post rack mount kit.</td>
</tr>
<tr>
<td>EN-SLX-9640-24S-I2C-AC-F</td>
<td>Base unit with 24 1G/10G SFP+ ports, 12 10Gb/25Gb/40Gb/50Gb/100Gb capable QSFP28 ports, 1 AC power supply, 6 fan modules, front-to-back airflow, and a 4 post rack mount kit.</td>
</tr>
<tr>
<td>XBR-R000297</td>
<td>SLX Fixed Rackmount kit, 4-post, mid/flush mount compatible</td>
</tr>
<tr>
<td>XBR-ACPWR-650-F</td>
<td>SLX Fixed AC 650W Power Supply Front to Back airflow. Power cords not included.</td>
</tr>
<tr>
<td>XEN-SLX9640-FAN-F</td>
<td>SLX 9640 FAN Front to Back airflow</td>
</tr>
<tr>
<td>XEN-SLX9640-FAN-R</td>
<td>SLX 9640 FAN Back to Front airflow</td>
</tr>
<tr>
<td><strong>Extreme SLX 9640 Upgrade Software Licenses</strong></td>
<td></td>
</tr>
<tr>
<td>EN-SLX-9640-4C-POD-P</td>
<td>Ports on Demand to enable 4×100 Gbe/40 Gbe ports (for Extreme SLX 9640-24S)</td>
</tr>
<tr>
<td>EN-SLX-9640-ADV-LIC-P</td>
<td>Advanced Feature License for MPLS, BGP-EVPN and Integrated Application Hosting for SLX-9640</td>
</tr>
</tbody>
</table>
Optics/Transceivers
For the most up-to-date list of optics/transceivers supported on this product, refer to our Extreme Optics Compatibility Tool at https://optics.extremenetworks.com

Power Cords
SLX series power cords can be ordered separately but need to be specified at time of ordering. Refer to https://www.extremenetworks.com/power cords/ for details on power cord availability for this product.

Warranty
The SLX 9740 is covered under Extreme's 1 Year Warranty policy. For warranty details, please visit: https://www.extremenetworks.com/support/policies

Maintenance Services
Extreme's maintenance and support services with 100% in-sourced engineering experts and over 90% first-person resolution ensure efficient operation of your business-essential network. 24x7x365 phone support, advanced parts replacement, and on-site support augment your staff with experienced resources that help you mitigate critical network issues fast. Visit Extreme Maintenance Services for more information.